Detoxification of 5-hydroxymethylfurfural by the Pleurotus ostreatus lignolytic enzymes aryl alcohol oxidase and dehydrogenase
نویسندگان
چکیده
BACKGROUND Current large-scale pretreatment processes for lignocellulosic biomass are generally accompanied by the formation of toxic degradation products, such as 5-hydroxymethylfurfural (HMF), which inhibit cellulolytic enzymes and fermentation by ethanol-producing yeast. Overcoming these toxic effects is a key technical barrier in the biochemical conversion of plant biomass to biofuels. Pleurotus ostreatus, a white-rot fungus, can efficiently degrade lignocellulose. In this study, we analyzed the ability of P. ostreatus to tolerate and metabolize HMF and investigated relevant molecular pathways associated with these processes. RESULTS P. ostreatus was capable to metabolize and detoxify HMF 30 mM within 48 h, converting it into 2,5-bis-hydroxymethylfuran (HMF alcohol) and 2,5-furandicarboxylic acid (FDCA), which subsequently allowed the normal yeast growth in amended media. We show that two enzymes groups, which belong to the ligninolytic system, aryl-alcohol oxidases and a dehydrogenase, are involved in this process. HMF induced the transcription and production of these enzymes and was accompanied by an increase in activity levels. We also demonstrate that following the induction of these enzymes, HMF could be metabolized in vitro. CONCLUSIONS Aryl-alcohol oxidase and dehydrogenase gene family members are part of the transcriptional and subsequent translational response to HMF exposure in P. ostreatus and are involved in HMF transformation. Based on our data, we propose that these enzymatic capacities of P. ostreatus either be integrated in biomass pretreatment or the genes encoding these enzymes may function to detoxify HMF via heterologous expression in fermentation organisms, such as Saccharomyces cerevisiae.
منابع مشابه
Anisaldehyde and Veratraldehyde Acting as Redox Cycling Agents for H(2)O(2) Production by Pleurotus eryngii.
The existence of a redox cycle leading to the production of hydrogen peroxide (H(2)O(2)) in the white rot fungus Pleurotus eryngii has been confirmed by incubations of 10-day-old mycelium with veratryl (3,4-dimethoxybenzyl) and anisyl (4-methoxybenzyl) compounds (alcohols, aldehydes, and acids). Veratraldehyde and anisaldehyde were reduced by aryl-alcohol dehydrogenase to their corresponding al...
متن کاملLigninolytic activity patterns of Pleurotus ostreatus obtained by submerged fermentation in presence of 2,6-dimethoxyphenol and remazol brilliant blue R dye.
The degradation of 2,6-dimethoxyphenol (DMP) and decolorization of Remazol brilliant blue R dye (RBB), added to culture media of Pleurotus ostreatus developed in submerged fermentation, and the laccase, manganese peroxidase and veratryl alcohol oxidase activities produced in these systems were evaluated. Both compounds were removed from the culture medium mainly by enzymatic action. These compo...
متن کاملBio-detoxification of Jatropha curcas seed cake by Pleurotus ostreatus
The detoxification of Jatropha curcas seed cake is of major interest for the biodiesel industry to add economic value to this residue and also to reduce the environmental damage caused by its inappropriate disposal. In this context, the treatment of this residue with white rot fungus, Pleurotus ostreatus, can be a viable alternative because it produces enzymes capable of degrading different lig...
متن کاملTranscriptional analysis of Amorphotheca resinae ZN1 on biological degradation of furfural and 5-hydroxymethylfurfural derived from lignocellulose pretreatment
BACKGROUND Furfural and 5-hydroxymethylfurfural (HMF) are the two major inhibitor compounds generated from lignocellulose pretreatment, especially for dilute acid, steam explosion, neutral hot water pretreatment methods. The two inhibitors severely inhibit the cell growth and metabolism of fermenting strains in the consequent bioconversion step. The biodetoxification strain Amorphotheca resinae...
متن کاملEnzymatic Preparation of 2,5-Furandicarboxylic Acid (FDCA)—A Substitute of Terephthalic Acid—By the Joined Action of Three Fungal Enzymes
Enzymatic oxidation of 5-hydroxymethylfurfural (HMF) and its oxidized derivatives was studied using three fungal enzymes: wild-type aryl alcohol oxidase (AAO) from three fungal species, wild-type peroxygenase from Agrocybe aegerita (AaeUPO), and recombinant galactose oxidase (GAO). The effect of pH on different reaction steps was evaluated and apparent kinetic data (Michaelis-Menten constants, ...
متن کامل